Big Data Analytics

7 November 2019

Business Design Centre, London




Thursday 7th November 2019

The Seminars will take place from 12:15 – 13:00
Delegates will be able to attend one seminar at the event. No pre-selection is required – delegates will be able to select which session they attend onsite.



Auditorium (Main Conference room)
Sponsored by:
Understanding Your Customers Inside Out: Using Data Assets to Balance Customer Retention and Profitability in a Shrinking Market

Simon Kelly, Director – Business Intelligence Group, CACI

The balance between customer churn and profitability is never an easy one. In a highly competitive market, even the smallest change in rate plans can have a significant impact on a company’s overall revenue.
Learn how one of Britain’s largest telecommunication companies combines big data technology, complex prediction algorithms and visual analytics to understand customer behaviour and its impact on the company’s profits. What was once a guessing game is now a more exact science and a key enabler in strategic pricing decisions.


Room A
Sponsored by:
Seeing is Believing: A Practical Look at the Path to Enterprise AI

Larry Orimoloye, Sales Engineer, Dataiku

Enterprise AI is a target state where every business process is AI-augmented, and every employee is an AI beneficiary. But is that really attainable? And, if so, how can an organisation practically leverage their data to achieve this?

In this talk, Larry Orimoloye, Sales Engineer at Dataiku and visiting researcher from Cambridge, will share practical examples of how AI has been leveraged in the industry to solve real business problems. He will show how companies of different sizes and across different sectors have begun this journey towards enterprise AI. And while some are farther along than others, by making the right decisions now and avoiding stumbling blocks, you too can supercharge your quest to this AI-fuelled future.


Room B
Sponsored by:
Data Modelling for Big Data & Analytics Projects with Apache Cassandra

Patrick Callaghan, Business & Technology Strategist, DataStax

Big Data and Analytics initiatives depend on data to work. That data has to be modelled and managed well to get value out of it. However, the approach we take around data modelling can be influenced by the ways that we store data over time.

Understanding this in advance can make it easier to query our data, and also avoid problems caused by bad decisions or overlooking data modelling at the start.

This session will help you understand how to build a strategy and implement a data model on Apache Cassandra to support your Big Data projects.


Room E
Sponsored by:
Welcome Aboard! An Exciting Journey of Big Data Analytics in the UK Rail Sector

Dr Anya Rumyantseva, Senior Data Scientist, Hitachi Vantara
Dr Apurva Sinha, CTO – Transport and Manufacturing, Hitachi Vantara

The UK railways are one of the busiest rail networks in the world. The demand for the UK rail network has been growing dramatically since the early 90s and expected to double within the next 8 years. Market structure and rising demand rewards innovation in the rail sector unleashing a myriad of opportunities for analytics. Rolling stock predictive maintenance, optimization of supply chain operations, analysis of train delays and knock-on effects, video intelligence on trains station to improve safety – this is just a few examples of big data analytics applications in rail domain.

In this seminar, Dr Rumyantseva and Dr Sinha will discuss:

  • Types of data sources in rail and how to work with them efficiently
  • Bringing value to the rail sector through data analytics and technology
  • Facilitating collaboration between data scientists and rail domain experts


Room F
Sponsored by:
Bridging the AI Gap: Uniting Data Scientists and Data Engineers for Accelerated Analytics Insight Using Talend

Ben Saunders, Expert Solutions Engineer, Talend

Today, many Data Science teams are choosing to leverage the power of MLaaS (Machine Learning as a Service) platforms on Azure, AWS and Google Cloud for developing and operationalising their AI and ML pipelines for predictive analytics. There are huge advantages to working this way, such as lower TCO, accelerated development and scalable cloud solutions. However, this migration to MLaaS platforms is not without its challenges. Firstly, Data Scientists still spend far too much of their valuable (and costly) time locating, preparing and cleansing data prior to modelling. Secondly, integrating new ML pipelines into existing applications (typically managed by different teams) can be difficult and often slow, meaning many organisations struggle to achieve the desired ROI from AI initiatives. This has led some companies to build entirely new (often segmented) teams to manage the operationalising and deployment of their ML pipelines using a process called MLOps. If only solutions existed to make the handoff between Data Scientists and Data Engineers more seamless leverage existing processes and practices…

In this session, Ben will demonstrate how Talend can be used to dramatically enhance the productivity of your Data Science and Data Engineering teams by continually delivering high quality, trusted data to the Cloud while also enabling a viable MLOps solution.